

Sampling Strategies

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Consequences of collecting a sample

Testing

- is expensive
- needs time budget
- can have severe consequences (e.g. product recall)
- can be ineffective (e.g. wrong testing method, low contamination)

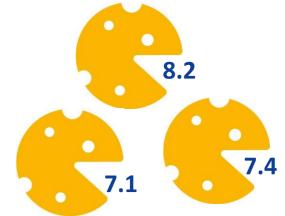
Teacheesy

The purpose of collecting a sample

The producer has first to be clear why he collects a sample. Sampling can be done because he wants to

- verify the functioning of his FSMS (see tool 7.1)
- determine the adherence to Good Manufacturing Practices (e.g. cleaning test, see section cleaning and disinfection)
- determine the utility of ingredients for a particular purpose (e.g. raw milk soft cheese, fresh herbs for fresh cheese)
- predict product stability
- establish an early warning systems to warn of the development of food safety hazards

According to his purpose the producers has to find an appropriate sampling method and strategy.



Important! Before sampling, be sure that:

- You can interpret the outcome of the analysis correctly

 type of sample (product, environment, method, ...)
 limits (legal requirements, own target value, ...)
- You know what you need to do when there is a positive finding:
 - non conformity management
 - corrective actions
 - preventive actions

Effectiveness of testing

Numbers of	Proportion of cheeses in lot which contain contaminant							
sample units analysed (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%
n=1	50%	20%	10%	5%	2%	1%	0%	0%
n=2	75%	36%	19%	10%	4%	2%	0%	0%
n=3	88%	49%	27%	14%	6%	3%	0%	0%
n=4	94%	60%	35%	19%	8%	4%	0%	0%
n=5	97%	68%	41%	23%	10%	5%	0%	0%
n=10	100%	90%	67%	42%	19%	10%	0%	0%
n=20	100%	99%	90%	68%	36%	20%	0%	0%
n=40	100%	100%	100%	93%	64%	40%	0%	0%
n=60	100%	100%	100%	99%	84%	60%	0%	0%
n=80	100%	100%	100%	100%	96%	80%	0%	0%
n=100	100%	100%	100%	100%	100%	100%	0%	0%

Probability of detecting a lot with a specified rate of non-conforming units depending on the numbers of sample units analysed (n), and when no sample unit is permitted to be positive (c = 0).

Teacheesy

Probability of detecting a contaminant

Numbers of	Proportion of cheeses in lot which contain contaminant							
sample units	E 00/	200/	100/	E 0/	70/	10/	0 5 00/	0 20%
analysed (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%
n=1	50%	20%	10%	5%	2%	1%	0%	0%
n=2	75%	36%	19%	10%	4%	2%	0%	0%
n=3	88%	49%	27%	14%	6%	3%	0%	0%
n=4	94%	60%	35%	19%	8%	4%	0%	0%
n=5	97%	68%	41%	23%	10%	5%	0%	0%
n=10	100%	90%	67%	42%	19%	10%	0%	0%
n=20	100%	99%	90%	68%	36%	20%	0%	0%
n=40	100%	100%	100%	93%	64%	40%	0%	0%
n=60	100%	100%	100%	99%	84%	60%	0%	0%
n=80	100%	100%	100%	100%	96%	80%	0%	0%
n=100	100%	100%	100%	100%	100%	100%	0%	0%

A sampling plan with 40 sample units has quite a low probability of detecting contamination rates of 1 or 2% as the probabilities of detection are only 40 and 64%, respectively.

Teacheesy

Probability of detecting a contaminant

Numbers of	Proportion of cheeses in lot which contain contaminant							
sample units analysed (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%
n=1	50%	20%	10%	5%	2%	1%	0%	0%
n=2	75%	36%	19%	10%	4%	2%	0%	0%
n=3	88%	49%	27%	14%	6%	3%	0%	0%
n=4	94%	60%	35%	19%	8%	4%	0%	0%
n=5	97%	68%	41%	23%	10%	5%	0%	0%
n=10	100%	90%	67%	42%	19%	10%	0%	0%
n=20	100%	99%	90%	68%	36%	20%	0%	0%
n=40	100%	100%	100%	93%	64%	40%	0%	0%
n=60	100%	100%	100%	99%	84%	60%	0%	0%
n=80	100%	100%	100%	100%	96%	80%	0%	0%
n=100	100%	100%	100%	100%	100%	100%	0%	0%

Conclusion:

Assurance of food safety cannot be based on endproduct testing.

Teacheesy

Purpose of a good sampling strategy

Testing should

- be part of a FSMS but not the only measure/action
- be not too expensive
- avoid severe consequences
- be effective

Teachesy

Sampling strategies – not too expensive

A clever sampling strategy can reduce the number of samples Producers have the following options to reduce the number of samples:

- Increase the significance level of the findings Focus on testing methods covering more than one batch (pooling samples, bottleneck management) but not by increasing the sample size
- Pooling samples

Can be used to have one sample with 125g instead of 5 samples of 25g (Useful if n=5 is mandatory). The legal requirement for food safety criteria is reached if it is not detected in 125g. If it is detected you have to return to the regulation 2073/2005 with n=5.

Definition of what is a batch (daily, weekly, monthly)
 Legislation doesn't define a daily production as a batch. The producer can
 decide to expand the batch on more than one production

Teacheesy

Sampling strategies – be effective

Establish an early warning systems to warn of the development of food safety hazards

• Take samples where higher level of contamination can be expected To achieve a reasonable certainty it can make sense to favour testing during the process or environmental testing. End-product testing is an ineffective way of detecting low level contamination. (e.g. when rind washing, analysis of smear water for presence of L.M. can be more effective at detecting a sporadic, low-level of contamination than endproduct testing)

Bottleneck Management

Each hazard has his most important sources of contamination. It can be more effective to develop and put in place target-oriented process monitoring steps than unspecific end-product-testing (e.g. analysis of stool samples of the employees for presence of Salmonella can be more effective at detecting a sporadic contamination than end-product testing.

Effective and not too expensive self monitoring measures

Hazard	Main source	Self monitoring measure	End-product testing
Listeria monocytogenes	Red smear	Analysis of smear water after rind washing oft he whole stock	Only if a new product is
	Raw milk	Milk or swabs from milk receiver or milk pump after milking	produced or if there was a loss of control
Salmonella	Staff	Stool samples oft he employees are tested	Only if a new product is produced or if there was a loss of control
Staphylococcus aureus	Raw milk	Bulk milk somatic cell count (In case of increased somatic cell count or frequent high levels in milk products check for staphylococcus aureus in bulk milk)	yes
	Staff	Training of milking staff	
Escherichia coli	Cleaning	Surface sampling (cheese vat, equipment, tubes, etc.)	yes
	Raw milk	Milk is tested for E. coli	

Teacheesy

