Good Manufacturing Practices:
Salting and Brining
Dry Salt

• Dry salt does not support the growth of pathogenic bacteria.

• It can be a source of chemical (e.g., copper, lead, mercury or cadmium) or physical contamination.

• It is easy to sieve the salt and check it visually for physical contaminants.

• If glass or metal contamination is suspected, the salt should not be used.

• The salt should always be of good quality, and must be suitable for food-use. Obtain salt from a reputable supplier.

• Store it in a clean, dry area and away from sources of potential contamination (e.g., cleaning chemicals).
Maintenance of Brine Tanks

• Use water of potable quality to prepare brine and store it in a clean container.
• If the brine tank cannot be kept in the production or ripening areas it is possible to cover the tank with a lid if contamination is likely.
• The brine should be kept at a temperature appropriate to the technology.
• Replenish salt and stir after each use.
• Suspended particles should be removed regularly
Maintenance of Brine Tanks

• Complete or partial renewal of brine may be necessary depending on the frequency of use and salt concentration.

• It is not recommended to pasteurise brine:

 o Brine can corrode HTST equipment due to salt and acidity

 o Pasteurisation can remove organisms which might provide positive compete against pathogen growth
Salt Concentration and pH of Brine

- **Salt concentration** and **pH** should be appropriate to the technology and recipe employed.
- Where appropriate, a salt concentration $\geq 19.5^\circ$ Baumé (21% w/v) can limit the growth of even the most **salt-tolerant pathogens** (*Listeria* and Coagulase Positive Staphylococci)
- Brine pH may not be sufficient to control growth of pathogens but;

 Some producers do monitor brine **pH** to ensure that it conforms **their expected values**.