

7.5 Strategie der Probennahme

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA

Konsequenzen einer Probennahme

Untersuchungen

- sind teuer
- benötigen Zeit
- können ernste
 Konsequenzen haben
 (z.B. Produktrückruf)
- können erfolglos sein (z.B. falsche Untersuchungsmethode, niedrige Kontaminationsrate)

Zweck der Probennahme

Der Hersteller muss sich darüber im Klaren sein, warum er eine Probe zieht. Die Probennahme kann aus folgenden Gründen erfolgen:

- Nachzuweisen, dass sein Lebensmittel-Sicherheits-Konzept (FSMS) funktioniert (siehe auch Instrument 7.1)
- Festzustellen, dass die Gute Herstellungspraxis befolgt wird
 (z.B. Reinigungskontrolle, siehe Abschnitt Reinigung und Desinfektion)
- Festzustellen, dass Zutaten für eine bestimmten Zweck geeignet sind (z.B. Rohmilch für Rohmilchweichkäse, frische Kräuter für Frischkäse)
- Vorherzusagen, wie lange ein Produkt haltbar sein könnte
- Einrichten eines Frühwarnsystemes, dass vor aufkommenden Gefahren für die Lebensmittelsicherheit warnt.

Je nach Zweck muss der Hersteller eine passende Untersuchungsmethode und Untersuchungsstrategie finden.

Vorbereitung der Probennahme

Wichtig!

Vergewissern Sie sich vor der Probennahme, dass

- Sie das Untersuchungsergebnis korrekt interpretieren können.
 - Art der Probe (Produkt, Umgebung, Methode, ...)
 - Grenzwerte (gesetzliche Grenzwerte, eigene Richtwerte, ...)
- Sie wissen, was Sie bei einem positiven Untersuchungsergebnis zu tun haben:
 - Havariemanagement
 - Korrekturmaßnahmen
 - Präventive Maßnahmen

Effektivität der Probennahme

Zahl der	Anteil der kontaminierten Käse in einer Charge								
untersuchten Proben je Charge (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%	
n=1	50%	20%	10%	5%	2%	1%	0%	0%	
n=2	75%	36%	19%	10%	4%	2%	0%	0%	
n=3	88%	49%	27%	14%	6%	3%	0%	0%	
n=4	94%	60%	35%	19%	8%	4%	0%	0%	
n=5	97%	68%	41%	23%	10%	5%	0%	0%	
n=10	100%	90%	67%	42%	19%	10%	0%	0%	
n=20	100%	99%	90%	68%	36%	20%	0%	0%	
n=40	100%	100%	100%	93%	64%	40%	0%	0%	
n=60	100%	100%	100%	99%	84%	60%	0%	0%	
n=80	100%	100%	100%	100%	96%	80%	0%	0%	
n=100	100%	100%	100%	100%	100%	100%	0%	0%	

Wahrscheinlichkeit nicht konforme Käse einer Charge durch Untersuchungen zu ermitteln, wenn keine der Proben positiv getestet werden darf (c=0).

Die Wahrscheinlichkeit hängt von den Faktoren "Anteil kontaminierte Käse je Charge" und "Anzahl untersuchter Proben je Charge" (n) ab.

Effektivität der Probennahme

Zahl der	Anteil der kontaminierten Käse in einer Charge							
untersuchten Proben je Charge (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%
n=1	50%	20%	10%	5%	2%	1%	0%	0%
n=2	75%	36%	19%	10%	4%	2%	0%	0%
n=3	88%	49%	27%	14%	6%	3%	0%	0%
n=4	94%	60%	35%	19%	8%	4%	0%	0%
n=5	97%	68%	41%	23%	10%	5%	0%	0%
n=10	100%	90%	67%	42%	19%	10%	0%	0%
n=20	100%	99%	90%	68%	36%	20%	0%	0%
n=40	100%	100%	100%	93%	64%	40%	0%	0%
n=60	100%	100%	100%	99%	84%	60%	0%	0%
n=80	100%	100%	100%	100%	96%	80%	0%	0%
n=100	100%	100%	100%	100%	100%	100%	0%	0%

Ein Probenplan mit 40 Proben je Charge hat bei einer Kontaminationsrate des Käses von 1% bzw. 2% eine geringe Wahrscheinlichkeit von 40% bzw. 64%, die kontaminierten Käse zu finden.

Effektivität der Probennahme

Zahl der	Anteil der kontaminierten Käse in einer Charge								
untersuchten Proben je Charge (n)	50%	20%	10%	5%	2%	1%	0,50%	0,20%	
n=1	50%	20%	10%	5%	2%	1%	0%	0%	
n=2	75%	36%	19%	10%	4%	2%	0%	0%	
n=3	88%	49%	27%	14%	6%	3%	0%	0%	
n=4	94%	60%	35%	19%	8%	4%	0%	0%	
n=5	97%	68%	41%	23%	10%	5%	0%	0%	
n=10	100%	90%	67%	42%	19%	10%	0%	0%	
n=20	100%	99%	90%	68%	36%	20%	0%	0%	
n=40	100%	100%	100%	93%	64%	40%	0%	0%	
n=60	100%	100%	100%	99%	84%	60%	0%	0%	
n=80	100%	100%	100%	100%	96%	80%	0%	0%	
n=100	100%	100%	100%	100%	100%	100%	0%	0%	

Fazit:

Die Sicherstellung der Lebensmittelsicherheit kann nicht durch Endproduktkontrollen erreicht werden.

Ziel einer guten Probennahmestrategie

Untersuchungen sollten

- Teil eines FSMS sein, aber nicht die alleinige Maßnahme
- nicht zu teuer sein
- helfen, ernste Konsequenzen vermeiden
- effektiv sein

Clevere Probennahmestrategie – effizient und günstig

Eine clevere Probennahmestrategie kann die Zahl der untersuchten Proben reduzieren.

Hersteller haben folgende Möglichkeiten, um die Zahl der Proben zu reduzieren:

• Steigerung der Aussagekraft einer Untersuchung Untersuchungsmethoden auswählen, die mehr als eine Charge einbeziehen (Poolproben, "Flaschenhalsmanagement") aber nicht durch Erhöhung der Probenzahl

• Sammelproben bilden

Statt 5 Proben à 25g wird aus den Einzelproben eine Sammelprobe mit 125g (Poolprobe) gebildet und untersucht (nützlich, wenn n=5 vorgeschrieben ist). Die gesetzlichen Anforderungen werden erfüllt, wenn das Lebensmittelsicherheitskriterium in 125g nicht nachgewiesen wird. Wenn es nachgewiesen wird, muss zu der Untersuchung gemäß Verordnung (EG) Nr. 2073/2005 mit n=5 zurückgekehrt werden.

• Definition des Begriffs "Charge" (täglich, wöchentlich, monatlich)

Die Gesetze legen nicht fest, dass eine Charge eine Tagesproduktion sein muss. Der Hersteller kann entscheiden, seine Charge auf mehrere Produktionen auszuweiten.

Beispiel: Effektive und kostengünstige Eigenkontrollen

Gefahr	Hauptquelle (Flaschenhals)	Eigenkontrollmaßnahme	Endprodukt- untersuchung	
Listeria monocytogenes	Rotschmiere	Untersuchung des Schmierwassers nach dem Schmieren des Lagerbestandes	Nur erforderlich, wenn ein neues Produkt hergestellt wird oder ein Kontrollverlust vorlag	
	Rohmilch	Milchfilter- oder Tupferprobe aus dem Milchabscheider oder der Milchpumpe nach dem Melken		
Salmonella	Personal	Untersuchung von Stuhlproben der Mitarbeiter		
Staphylococcus aureus	Rohmilch	Zellzahluntersuchung der Sammelmilch (Bei erhöhter Zellzahl oder wenn Milchprodukte häufig hohe Werte an Staphylococcus aureus aufweisen, wird die Sammelmilch auf Staphylococcus aureus untersucht)	ja	
	Personal	Schulung des Melkpersonals		
Escherichia coli	Reinigung	Abklatschtests der Oberflächen (Käsekessel, Geräte, Leitungen, etc.)		
	Rohmilch	Untersuchung der Milch auf E. coli		

